The Lq Support Vector Machine

نویسندگان

  • Yufeng Liu
  • Hao Helen Zhang
  • Cheolwoo Park
  • Jeongyoun Ahn
  • YUFENG LIU
  • HAO HELEN ZHANG
  • CHEOLWOO PARK
  • JEONGYOUN AHN
چکیده

The standard Support Vector Machine (SVM) minimizes the hinge loss function subject to the L2 penalty or the roughness penalty. Recently, the L1 SVM was suggested for variable selection by producing sparse solutions [BM, ZHRT]. These learning methods are non-adaptive since their penalty forms are pre-determined before looking at data, and they often perform well only in a certain type of situation. For instance, the L2 SVM generally works well except when there are too many noise inputs, while the L1 SVM is more preferred in the presence of many noise variables. In this article we propose and explore an adaptive learning procedure called the Lq SVM, where the best q > 0 is automatically chosen by data. Both twoand multi-class classification problems are considered. We show that, the new adaptive approach combines the benefit of a class of non-adaptive procedures and gives the best performance of this class across a variety of situations. Moreover, we observe that the proposed Lq penalty is more robust to noise variables than the L1 and L2 penalties. An iterative algorithm is suggested to solve the Lq SVM efficiently. Simulations and real data applications support the effectiveness of the proposed procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Application of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds

In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...

متن کامل

A Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting

Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. I...

متن کامل

Least Squares Support Vector Machine for Constitutive Modeling of Clay

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...

متن کامل

Identification areas with inundation potential for urban runoff harvesting using the support vector machine model

     Rainfall-runoff from urban areas is one of the available water resources, which is wasted due to lack of attention and proper management. Besides, urban runoff excess of drains capacity causing many problems including inundation and urban environmental pollution. Therefore, harvesting this runoff can provide a part of the required water in urban areas, and also reduce flood and urban inund...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009